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ELECTRON CAPTURE BY PROTONS IN 
IN AN ELECTRIC FIELD 

HYDROGEN 

SUMMARY 

The evaluation of the capture cross section in the Brinkman Kramers ap- 
proximation with the hydrogen atom wave function in parabolic coordinates is 
much simpler than this wave function in spherical coordinates. A simple closed 
formula for the electron capture cross  section in parabolic coordinates , appro- 
priate to the charge transfer in an electric field, is derived with the electron 
initially and finally in two arbitrary sublevels of the atom, and it is shown that 
the c ross  section, apart from a weighting factor, is independent of the particular 
sublevel and depends only on the principal quantum numbers involved. In this 
way the charge transfer cross  section in an electric field is obtained. In addi- 
tion, the solution of the problem in parabolic coordinates leads, through a trans- 
formation, to the determination in closed form of the c ross  section is spherical 
coordinates. A general formula is worked out for the c ross  section ~ ( n z ,  n’z’), 
and as an example simple formulas for w ( IS, In)  with the final states the sub- 
levels of n = 1, 2, 3 are tabulated. Previous works have listed these c ross  sec- 
tions in integral forms. 

It is found that the momentum distribution of electrons in the Stark levels 
of the hydrogen have extremely simple form in contrast to the momentum dis- 
tribution in the optical levels. The averaged momentum distribution over the 
sublevels of a principal quantum number gives results identical to the results 
originally obtained by Fock, and recently reobtained by a different method by May. 

The classical momentum distribution of a bound particle in a Coulomb field 
is shown to be the same in form as the quantum mechanical distribution. The 
use of this distribution function in classical calculation of scattering will make 
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I. INTRODUCTION 

The momentum density distribution function for a bound electron in the 
Coulomb field of a nucleus of charge Z e  occupying the state of the principal 
quantum number n and the azimuthal quantum number 1 has been found by 
Podolanski and Paulingl using the Fourier transform of the spatial wave functions. 
and by Fock2 by solving the Schroedinger integral equation in the momentum space. 
Fock fur ther  has shown that when the above density distribution function is 
averaged over E , a simple function results. Let p represent the momentum of 
the electron and q its propagation vector, then p = hq and this function is given 
by 

,2 
'-- ' 

l = o  ' 

with a. the Bohr radius. Eq. (1) has recently been rederived by May4 by a 
different method. 

The momentum density distribution function of a bound electron in a Coulomb 
field has a particular simple form when the wave function is expressed in para- 
bolic coordinates, which is the wave function of the hydrogen atom in an electric 
field, weak compared to the electron-nucleus interaction. If we specify a particular 
state of the electron by n n1 n2 , with n1 and n2 the quantum numbers corresponding 
to the 
function, except for a weighting factor, has the same form as D(n, q) 
Eq. (l), while the same function describing a state n l  in spherical coordinates 
has a more complicated form. It is given in terms of the Gegenbauer polynomials 
whose argument is a function of the 4'. 

and 7 )  coordinates, it is shown here that the momentum distribution 
given by 
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The electron capture cross  section by proton from the hydrogen atom in 
the Born approximation in which the interaction between the nuclei is neglected 
is given as  an integral over the product of the squared moduli of the Fourier 
transforms of the initial and the final electron states wave functions. ’ This - 
integral is the same as an integral over the product of the momentum densities 
of the two states. This is the approximation used in this paper and by using 
momentum density functions of the Stark levels of the hydrogen atom which are 
similar to the density function given in Eq. (l), the integral is found in closed 
form. Furthermore it is found the interesting result that the capture cross  
section for the  initial state n n1n2 and the final state n‘ n; n i  is independent of 
n l ,  n 2 ,  n’, and n; , and depends only on the principal quantum numbers n andn’. 
The other vairable parameters of the cross sections are the charges of the 
target nucleus and the incident particle, Z and Z’ , and the initial relative velocity 
of the two heavy particles. 

In problems in which radiative transitions affect the population densities of 
the excited states of the hydrogen atom, and also in the capture problems in the 
non-hydrogenic atoms with wave functions which can be approximated by the 
products of the one electron wave functions, it is desirable to have the capture 
cross sections in spherical coordinates. Bates and Dalgarno have found these 
cross  sections between the ground state as the initial state and the sublevels of 
the n = 1 - 4 as the final states. Hiskesg has extended these calculations to sub- 
levels through n = 15 as the final states. In all these calculations, however, the 
results are  in integral form. By transforming the hydrogenic atom wave func- 
tions from the parabolic to the spherical coordinates wave functions, and using 
the electron capture amplitudes in parabooic coordinates, it is possible to express 
the cross  section in spherical coordinates in closed form, and as a sum over 
finite number of terms. This has been done here and a general expression for 
the cross  section for the initial state n I and the final state n’ I ’ is derived. 
In particular the cross section between the ground state and all sublevels 
through n = 3 are listed. 

At the end, the classical momentum distribution of a bound particle in a 
Coulomb field is worked out in Appendix I, and i t  is shown that the distribution 
function is similar to the quantum mechanical distribution function given by (1). 
By applying the Bohr-Sommerfeld quantization rule to the classical function, 
the two functions become identical. The consistency of the classical and the 
quantum mechanical distribution functions makes it desirable that in a classical 
calculation of some scattering problems the velocity distribution function given 
in Appendix I be used, and comparison be made with the available quantum 
mechanical calculations. 
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.. 
11. MOMENTUM DISTRIBUTION I N  THE STARK LEVELS 

L 
OF THE HYDROGEN ATOM 

The Schroedinger equation for a bound electron with position vector r in the 
field of a charge Ze located at the origin is given by 

with a defined in (1). The Fourier transform of #(a, r) is given by 

u ( a ,  q) = ( 2 7 ~ ) - ~ / ~  eiQ*r#(a,r)dr .  s 
We define in addition the function 

Then by substituting (Z/r)+(a, r) from Eq. (2) into Eq. (4) and carrying out a 
partial integration we obtain 

(3) 

The momentum density, and also the electron capture c ross  sections, are 
given in terms of the squared modulus of u ( a ,  q) summed over the magnetic 
quantum numbers. Since this quantity is a scalar and invariant under rotation 

3 



of the coordinate system, fo r  evaluation of u ( a ,  q) we can take for convenience 
the z-axis of the coordinate system along the q and we designate in this case 
the u ( a ,  q) and v ( a ,  q) by u ( a ,  q)and v ( a ,  q) respectively. 

We now evaluate LJ (a ,  q) in the parabolic coordinates. Keeping in mind that 
in these coordinates r = 1/2(c t q), z = 1/2(6 - q), d r  = 1/4 (4 t 77) d 5 d q  d4 ,  
and expressing the spacial wave function as the product of two associated Laguerre 
functionslo, w e  obtain from (4): 

ti(nnln2m, q) = (27~)- IC, (nn,n, m, r) d r  = 0, m # 0 , 

z v(nnln20,q) = (27~)-~/, IC,(nnln20, r) d r  

where where 

a 

1 ( I  = I, exp [- - 2) 3 L; ( a e )  

Using the generating function of the associated Laguerre 
from (8) that 
Using the generating function of the associated Laguerre 
from (8) that 

4 

d t .  

functions'' it follows 



m m 

1 - S I  I(Z) - - - I, e x p [ - ( E - S  +-E-) C]dx 
I !  l - s  2 2 l - s  

1 =o  

= [+ ( a  - iq) (1 - s >  t a s  . 
1 - l  

Now by introducing 

1 
2 

w = - ( a  - iq) ,  

the preceding equation can be written 

(9) 

By equating the coefficients of equal powers of s on both sides of this equation 
we obtain 

1 I !  I(1) = - w (-5) . 
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Substitution of I(Z) from this equation into Eq. (7) gives 

1 za3'2 v(nnln20, q) = - - 
277m 1u12 

By making use of the equation 

n1 t n 2 = n - 1 - m ,  

Eq. (13) can be written, after neglecting a constant phase factor, 

and by Eqs. (5, l o ) ,  

(13) 

Equations (15, 16) are the main equations from which the momentum distribution 
and electron capture cross  sections are derived. 
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The momentum distribution of an electron in the state nn1n2 is given by 

= 1 u(nnln20, q)I2 = - 8Z2 a3 * 
1 

9 

n 7 ~ 2  a: (a2 t q2)4 

an expression which is independent of the sublevel quantum numbers n1 and n2 . 

The averaged momentum distribution of an electron in the shell n is given 
by averaging D(nnl n2, q) over all n1 and n2. Keeping in mind that there a r e  n2 
states for a given n we obtain 

n- 1 

D(n, q) = n-2 D(nnln2, q) = n-l  D(nnln2, q) 
"1=0 

It is interesting to notice that the integral with respect to q over D(n, q) is 
normalized to unity which corresponds to an electron in the n shell: 

q2 dq 
32 z2 a3 JOw (a2 + q2)4 

D(n, q) d q  = 
n2 7~ a: 

(19) 
7T - = 1. - 32 Z2 a' . - 

n2 T a i  32  as 

The expression for D(n, q) given in Eq. (18) is identical to the expression 
given in Eq. (l), derived by Fock and May using spherical coordinates, and to the 
expression given in Eq. (All) for the classical momentum distribution in a 
Coulomb field. 
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Equation (17) has the interesting meaning that the Stark levels of the hydrogen 
atom within a given shell n ,  except for a weighting factor, have the same momen- 
tum distribution. 

. 

111. CAPTURE CROSS SECTION IN AN ELECTRIC FIELD12 

Assume a nucleus of charge Z '  and mass M' captures an electron from a 
single electron atom with nucleus of charge Z and mass  M to form an atom with 
nucleus of charge Z a  and mass M'. The capture cross  section in the Born ap- 
proximation in which the interaction between the nuclei is neglected is given 
by8,13 

with ,LL the reduced mass of the system, e the absolute value of the electronic 
charge, v and v' the magnitudes of the initial and final velocities of relative 
motion of the nuclei; and B the angle between v and v ' . From here on the un- 
primed symbols correspond to the initial states while the primed a r e  for the 
final states. The functions f(a, 9) and g ( a ,  9) a r e  defined by 

Z 
eiqsr  -$(a, r) d r ,  J r  g ( a ,  9) = 

with $(a ,  r) and $(a ' ,  r') the wave functions of the atoms Z and Z a  , and q 
and q' are related to the velocities v and V' through 

with 
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c 

In the impact parameter approximation the corresponding expression for 
the c ross  section is given by4* 14* l 5  

3 

with P a dimensionless quantity defined by 

p = R v / e 2 ,  

and 

with 

with a0 the Bohr radius and n and n' the principal quantum numbers of the 
initial and the final states of the electron. 

A s  the integral that appears in the impact parameter method is easier to 
handle, the cross  sections evaluated below a r e  according to this method. 

In a weak electric field the energy levels of the hydrogen atom split into 
Stark levels. The corresponding wave functions a re  given in parabolic coordinates. 
By the definitions (21, 22) and through Eqs. (15, 16)  we obtain 

The capture c ross  section in the impact parameter approximation with the atom 
Z in the state nn1n2 and the atom Z' i n  the state n'n; n; is then given by 
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Since through Eqs. (10, 1, 27, 28) we have 

i t  follows that 

It is evident that as stated previously a(nn, n2, n'ni n;) is independent of nl;2;in;. 
The transition u(nn1n2, n') is obtained by summing a(nnln2, n'nin;) over n1n2. 
Noticing that only states with m' = 0 contribute to the c ros s  section we obtain 

a(nnln2, n ')  = n' a(nnln2, n'nin;) 

Finally the transition a(n,  n') is obtained by averaging a(nn1n2, n') 
initial states. Since there are n2 initial states but only n states have nonvanish- 
ing c ros s  sections we obtain 

over the 

a(n,  n ')  = n-l cr(nnln2, n') 

The above result is identical with the result  obtained by May.4 
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IV. Capture Cross Section in Spherical Coordinates 

'1 
Let cp(n I m 1 r) represent the wave function of the hydrogen atom in spherical 

coordinates. Then we define the functions F(n 1 m, q) and G(n Z m, q) by 

By writing 

G(nZ m, q) = - y(nZ m, r) dr.  (37) 

and using the expansion16 

where f. and i a re  unit vectors in the directions of q and r ,  Eq. (36) can be 
written a s  

where 

When i is along the z axis, by the definition of yl 
Legendre polynomials we have 

(i) in terms of the associated 
m 

11 



If in this case as usual we designate the F(n 1 m , q) by F(n 1 m , q), through 
Eq. (40) we obtain 

F(n 1 m ,  q) = 6 (m, 0) 477 iz iF Inl  (q)l 

and 

? 

(43 1 

When Eq. (44) is summed over m and use is made of l7 

1 

we obtain 

(45) 

This was  the result stated at the beginning of Sec. I1 by the statement that 
the left hand side of Eq. (46) is a scalar and invariant under rotation of the co- 
ordinate system. 

Since the wave function of the hydrogen atom forms a complete set in each 
of the two spherical and parabolic coordinates, the wave function in spherical 
coordinates can be expressed as a linear superposition of the wave functions in 
parabolic coordinates. In this transformation the principal and the magnetic 
quantum numbers n and m remain fixed: 

where al 
By droppingnrn from the indices in Eq. (47), replacing n1 by i , substituting 
this equation in Eq. (36) and making use of Eq. (21) we obtain 

a r e  the elements of the transformation matrix. In our problem m = 0. 
" 1  

n - 1  
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The determination of al fo r  m = 0 and arbitrary n is worked out in Ap- 
pendix 11, and the matrices for n = 1, 2 ,  3 ,  4,  5 a r e  given explicitly. 

i 
By Eq. (29) we now obtain 

* 4 1 i - j  1 .  where R e  stands for the real par t  of w 

When a binomial expansion is made of this quantity in terms of a and q , 
(Cf. Eq. ( lo ) ) ,  we obtain 

In similar way, through Eq. (30), (50) 

By making use of Eqs. (27, 28) and making the expansion 

in Eqs. (‘50, 51), keeping in mind Eq. (32), we obtain the capture c ross  section 
with the initial states n 1 and the final states n‘ Z ’ , averaged over the initial 
s ta tes  and summed over the final states. This is given by 
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Y stands for  the set of 4 integers i , j ,  A ,  p which take on the following values: 

(55) 

i = O ,  1 , 2 , .  . . . , n - 1  ; 

j = O ,  1, 2 , .  . . . , n - 1  ; 

A = O ,  I ,  2, . . . . , 2 1 i  - j l  ; 

p = O ,  1, 2, . . . . , A .  

The integral appearing in Eq. (53) is of the form 

I(M, N) = 9 

which after integration by par ts  yields 

N - 1  -' 
I(M, N) = ( ) I (0 ,  N -M) 
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In this way we obtain 

By introducing the dimensionless quantity (58) 

we finally get 

with y defined by Eq. (55), and a and p given by Eqs. (1) and (16). 

Since u(n8, n ' t ' )  does not change by the interchanges of i and j , and i' 
and j '' Eq. (60) can be written alternatively as 



where 6(i, j ) is the Kronecker delta, and summation over the indices is the 
same as given by Eq. (55) except that now 

If N be  the number of the terms in the summations expressed by y in Eq. 
(60'), it is easy to show that 

Then the total number of terms in Eq. (60') is NN'. 

When the initial state is the ground state, Eq. (60') reduces to, omitting the 
primes for convenience, 

The following simple formulas a r e  obtained for the electron capture cross  
sections with the ground state as the initial state and the sublevels of n = 1, 2,  3 
as the final states. Introducing 

a2 A =  1 

a2 t p2 

with a and p referring to the final states (Cf. Eqs. (1, 28), and 

16 



c we obtain 

1 (i) D ( l S ,  1 s )  

in agreement with the value given by Bates and Dalgarno 8. 

~ ( h ,  2p) = 200 ($A - ? A 2 ) ,  8 

4 
5 

4 1 ,  2) = d l s ,  2 s )  + D(lS, 2p) = - Do. 

64 (iii) o ( l s ,  3 s )  = 3Q0 

128 32 
21 3 27 

~ ( 1  s, 3d) = 3c0 (- A2 - - A3 '28 ~ 4 )  , 

(72) 
~ ( 1 ,  3) = ~ ( l s ,  3s) + o ( ~ s ,  3p) + ~ ( l s ,  3d) = -  9 c0. 

5 
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APPENDIX I 

Classical Momentum Distribution of a Bound Particle 
in a Coulomb Field 

Assume a bound particle of charge - e ,  mass m and momentum p in the field 
of a nucleus of charge Ze. The conservation of energy requirement is that 

p* Ze2 E = - - - ,  
2m r 

with E the energy of the particle and r its distance from the origin. We recog- 
nize that the density of the particle in phase space is given by 

N S ( E - - + g ) ,  P2 
2m r 

with N the normalization constant determined by the equation 

On the other hand if the momentum density between p and p + d p  is given by 
D(p), we must have 

D(p) d p  = 1 .  I 
Combining Eqs. (A2) and (A3) we obtain 

D(p) = N l 8  ( E  -et...) 2m r dr  

18 



Below we evaluate the integrals occurring in (A4). Introducing 

we obtain 

Consequently 

[ c - E ] '  

7T(2m)3/2 = 16 rr2 (Ze2)3 
32 (-EYl2 

In this way we obtain 

8 (- 2 m  E)5/2 

rr2 (p2 - 2mE)4 
W p )  = 7 

which is the desired relationship. It is seen that D(p) is a scalar and independ- 
ent of the direction of p. 

To show the agreement of this equation with the quantum mechanical momen- 
tum distribution, following the text we introduce the propagation vector q related 
to P by 

p =hq. (A9) 
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c 

We then obtain 

According to Bohr-Sommerfeld classical quantization formula: 

a defined by Eq. (1). In this way we obtain from (A8), (A9), (AlO), 

in agreement with Eq. (1). 
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APPENDIX I1 

The Elements of the Transformation Matrix 
between the Spherical and the Parabolic Wave Functions 

We require the transformation matrix which for a given principal quantum 
number n transforms the n states with m = 0 in the spherical coordinates to 
another set  of n states in the parabolic coordinates. The simplest way to find 
the transformation matrix is by noticing that the matrix elements of interaction 
of an electric field with the hydrogen atom, taken with the unperturbed wave 
function of the atom , a r e  diagonal in the parabolic coordinates representation. 
Let 6 be this matrix and let A be the transformation matrix. We must then 
have 

where H’ is the interaction matrix in spherical coordinates. € is given by18 

3 
1 1  2 

E . .  = - 6 ( i ,  j ) - n e F a o  ( 2 j  t l  - n ) ,  

with F the strength of the electric field. Similarly through Eq. (38) we can write 

eio (r) r c o s  8 cpnjo(r) d r  
1 J  

21 



Now l9 

Also 2o 

In this way we obtain 

(A 17 
3 

1 1  2 
H I .  = - - n e  F a o  [Ci S ( i ,  j t 1) t Citl  S( i  + 1, j ) l ,  

with 

Eq. (A12) can now be written 

Ail H i j  E .  i i  A i j ,  
1 

which by means of Eqs. (A13), (A17) reduces to 

Ai j + l  cj+l t Ai j - l  C. = ( 2 i  + 1 - n )  A i j .  
1 
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This is a recursion relationship for  A by means of which all the elements of a 
row of A can be found once the first element of the row is given. 

c 

% The unitary condition on A gives 

n-1 

A?. = 1, c j 50 

where we have assumed that the elements of A are real and if a solution for A 
is found our assumption is justified. 

Eqs. (A20) and (A21) are sufficient for the determination of A for any given 
n. This has been done for n = 1, 2, 3 ,  4,  5. In the text the inverse of A is needed. 
Let a be the inverse of A ,  

with x the transpose of A .  The elements of a for  n = 1, 2, 3 ,  4, 5 are given 
below. 

1 

-1 
& 
- 

-1 

3 - 
Js 

1 

-1 1 

1 - 3 6 
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1 a(5) = -  
fi 

1 1 

lE 

fi 0 

-lE 

-f i  
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